Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 137(7): 908-922, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33174606

RESUMO

Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica/genética , Hematopoese/genética , Sistema Hematopoético/fisiologia , Código das Histonas/genética , Histona Desmetilases/fisiologia , Animais , Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Feminino , Predisposição Genética para Doença , Hematopoese Extramedular , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Reconstituição Imune , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Experimental/genética , Leucemia Experimental/virologia , Masculino , Camundongos , Camundongos Knockout , Vírus da Leucemia Murina de Moloney/fisiologia , Células Mieloides/patologia , Quimera por Radiação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Integração Viral
2.
Clin Cancer Res ; 26(8): 2065-2079, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32047002

RESUMO

PURPOSE: Epigenetic deregulation is deeply implicated in the pathogenesis of bladder cancer. KDM6A (Lysine (K)-specific demethylase 6A) is a histone modifier frequently mutated in bladder cancer. However, the molecular mechanisms of how KDM6A deficiency contributes to bladder cancer development remains largely unknown. We hypothesized that clarification of the pathogenic mechanisms underlying KDM6A-mutated bladder cancer can help in designing new anticancer therapies. EXPERIMENTAL DESIGN: We generated mice lacking Kdm6a in the urothelium and crossed them with mice heterozygous for p53, whose mutation/deletion significantly overlaps with the KDM6A mutation in muscle-invasive bladder cancer (MIBC). In addition, BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine), a cigarette smoke-like mutagen, was used as a tumor-promoting agent. Isolated urothelia were subjected to phenotypic, pathologic, molecular, and cellular analyses. The clinical relevance of our findings was further analyzed using genomic and clinical data of patients with MIBC. RESULTS: We found that Kdm6a deficiency activated cytokine and chemokine pathways, promoted M2 macrophage polarization, increased cancer stem cells and caused bladder cancer in cooperation with p53 haploinsufficiency. We also found that BBN treatment significantly enhanced the expression of proinflammatory molecules and accelerated disease development. Human bladder cancer samples with decreased KDM6A expression also showed activated proinflammatory pathways. Notably, dual inhibition of IL6 and chemokine (C-C motif) ligand 2, upregulated in response to Kdm6a deficiency, efficiently suppressed Kdm6a-deficient bladder cancer cell growth. CONCLUSIONS: Our findings provide insights into multistep carcinogenic processes of bladder cancer and suggest molecular targeted therapeutic approaches for patients with bladder cancer with KDM6A dysfunction.


Assuntos
Carcinogênese/patologia , Histona Desmetilases/fisiologia , Inflamação/patologia , Macrófagos/imunologia , Proteína Supressora de Tumor p53/fisiologia , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Bases de Dados Genéticas/estatística & dados numéricos , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Urotélio/imunologia
3.
Exp Anim ; 60(2): 133-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21512268

RESUMO

In the antioxidant defense system, superoxide dismutase (SOD) catalyzes the breakdown of superoxide into hydrogen peroxide and oxygen. In the cecum, the influence of intestinal microflora on SOD activity is unknown. In this study, we used germ-free (GF) mice to examine the effect of intestinal microflora on SOD activity in the cecum, and SOD activity was compared between GF and conventional (CV) mice. The activity of CuZnSOD and MnSOD was determined using the SOD Assay Kit-WST. Expressions of CuZnSOD mRNA and protein were determined by real-time PCR and western blot analyses, respectively. The activities of CuZnSOD and MnSOD were significantly higher in the ceca of GF IQI and FVB/N strain mice than in CV mice (P<0.01-0.05). The gene expressions of CuZnSOD mRNA in the ceca of GF mice were significantly higher than those in CV mice (P<0.05), and CuZnSOD protein expression showed similar tendencies. Consistent with the abovementioned results, the total SOD activity in conventionalized mice decreased to the level of total SOD activity observed in the ceca of CV mice. Furthermore, no differences between GF and CV mice were observed in the SOD activities in the liver and thymus. Our results suggest that the antioxidant defense system in the mouse cecum is influenced by the intestinal microflora that downregulate SOD activity.


Assuntos
Antioxidantes/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Superóxido Dismutase/metabolismo , Animais , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Especificidade da Espécie , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...